容器化RDS|计算存储分离架构下的 IO 优化

本文涉及的产品
容器镜像服务 ACR,镜像仓库100个 不限时长
简介:

计算存储分离架构

架构示意图如下:

f3dbc8e85ab8eb687d952f20a4c721378637aed5

存储层由分布式文件系统组成,以 Provisoner 的方式集成到 Kubernetes.

在我们看来, 计算存储分离的最大优势在于:

将有状态的数据下沉到存储层,这使得 RDS 在调度时,无需感知计算节点的存储介质,只需调度到满足计算资源要求的 Node,数据库实例启动时,只需在分布式文件系统挂载 mapping 的 volume 即可,可以显著的提高数据库实例的部署密度和计算资源利用率。

其他的好处还有很多,譬如架构更清晰,扩展更方便,问题定位更简单等,这里不赘述。

计算存储分离架构的缺点

俗话说的好:

上帝为你关上一扇窗的同时,再关上一扇门。

如下图所示

196be2e580c457167c72b6b22ee824b640e7bdec

相较本地存储, 网络开销会成为 IO 开销的一部分, 我们认为会带来两个很明显的问题:

  • 数据库是 Latency Sensitive 型应用, 网络延时会极大影响数据库能力(QPS,TPS);
  • 在高密度部署的场景, 网络带宽会成为瓶颈, 可能导致计算 & 存储资源利用不充分。

其实还有一个极其重要的问题,由于kubernetes 本身没有提供 Voting 服务和类似 Oracle Rac 的 Fence 机制,在计算存储分离架构下,当集群发生脑裂,并触发 Node Controller 和Kubelet 的驱逐机制时,可能会出现多个数据库实例同时访问一份数据文件导致 DataCorruption 的情况,数据的损失对用户而言是不可估量也不可忍受的。

我们在 kubernetes 1.7.8 下使用 Oracle , MySQL 都可以100%复现这个场景,通过在 Kubernetes 上添加 Fence 机制,我们已解决该问题。如果大家有兴趣,会再做专门的分享。

下面,就需要结合 MySQL 的特性来进行有针对性的优化。

以下测试方案的设计,测试数据的梳理来自于沃趣科技MySQL专家@董大爷 和 @波多野老师。

DoubleWrite

在 MySQL 中我们首先想到了 DoubleWrite. 首先看下官方解释,它是干什么的 :

The InnoDB doublewrite buffer was implemented to recover from half-written pages. 
This can happen when there's a power failure while InnoDB is writing a page to disk. On reading that page, 
InnoDB can discover the corruption from the mismatch of the page checksum. However, in order to recover, 
an intact copy of the page would be needed.

The double write buffer provides such a copy.

Whenever InnoDB flushes a page to disk, it is first written to the double write buffer. 
Only when the buffer is safely flushed to disk will InnoDB write the page to the final destination. 
When recovering, InnoDB scans the double write buffer and for each valid page in the buffer checks if the page in the data file is valid too.

Although data is written twice, the doublewrite buffer does not require twice as much I/O, 
as data is written to the buffer in a large sequential chunk with a single fsync() call. 
There is extra time consumed however, and the effect becomes visible with fast storage and a heavy write load.

简单说 DoubleWrite 的实现是防止数据页写入时发生故障导致页损坏(partial write),所以每次写数据文件时都要将一份数据写到共享表空间中,当启动时发现数据页 Checkum 校验不正确时会使用共享表空间中副本进行恢复,从 DoubleWrite 实现来看这部分会产生一定量的 IO .所以:

最好的优化就是减少 IO, 在底层存储介质或文件系统支持 Atomic Write的前提下, 可以关闭MySQL 的 DoubleWrite 以减少 IO

单机架构 : 关闭 DoubleWrite

MariaDB 已支持该功能(底层存储介质需支持 Atomic Write ),并在单机环境做了相关测试。数据如下:

9d5358096bf908095756833f6615a1933472e2c3

结论:单机环境下,启用Atomic Write(关闭 DoubleWrite )能立即带来30%左右的写性能改善。DoubleWrite

原文地址 : http://blog.mariadb.org/mariadb-introduces-atomic-writes/

计算存储分离架构 : 关闭 DoubleWrite

所以, 重点是我们需要测试一下在计算存储分离架构下(分布式存储必须支持 Atomic Write ), 关闭DoubleWrite Buffer 的收益。

测试场景

  • 采用Sysbench 模拟 OLTP 敷在模型 (跟 MariaDB 相同)
  • 数据库版本选择了更流行的 MySQL 5.7.19 (测试时的最新版本)
  • 由本地存储改为分布式文件系统
  • 测试数据量, 数据文件大写

        1、10GB

        2、100GB

测试结果 : 10GB数据量

Sysbench 指标:

98934f028634e26201c10848fe3dc1ee979ea74b

分布式文件系统指标:

771f957687883bee62ba481d96ec0369016ea01a

在计算存储分离架构下, 启用Atomic Write(关闭 DoubleWrite ), 10GB数据量, 因为大部分数据已经缓存到数据库 buffer cache 中, 所以在 IO 不是瓶颈的情况下:

Sysbench指标, 提升不明显

       tps ↑0.2656%,qps ↑0.2797%,rst ↑14.9651%

分布式文件系统指标

       Throughput 下降53%, 显著优化了网络带宽

测试结果 : 100GB数据量

Sysbench 指标:

1182c9ac6dc6ca60a15d14cb0944e3bbd637d530

分布式文件系统指标:

b96c2e5751b75cd499e1cc0322578f50be844614

在计算存储分离架构下, 启用Atomic Write(关闭 DoubleWrite ), 100GB数据量, 因为大部分数据无法缓存到数据库 buffer cache 中, 所以在 IO 是瓶颈的情况下:

Sysbench指标, 提升明显:

       TPS ↑28.0892%,QPS ↑28.0893%,RST ↓169.2033%

分布式文件系统指标

       IOPS 提升22.3%

       Latency 下降 39%

       在IOPS 提升22.3%的情况下, Throughput 仅多消耗 3.6%


原文发布时间为:2018-01-11

本文作者:熊中哲

本文来自云栖社区合作伙伴“老叶茶馆”,了解相关信息可以关注“老叶茶馆”微信公众号

相关实践学习
基于CentOS快速搭建LAMP环境
本教程介绍如何搭建LAMP环境,其中LAMP分别代表Linux、Apache、MySQL和PHP。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助     相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
1月前
|
存储 缓存 关系型数据库
MySQL的varchar水真的太深了——InnoDB记录存储结构
varchar(M) 能存多少个字符,为什么提示最大16383?innodb怎么知道varchar真正有多长?记录为NULL,innodb如何处理?某个列数据占用的字节数非常多怎么办?影响每行实际可用空间的因素有哪些?本篇围绕innodb默认行格式dynamic来说说原理。
828 6
MySQL的varchar水真的太深了——InnoDB记录存储结构
|
1月前
|
Kubernetes 开发者 Docker
基于容器技术的微服务架构
基于容器技术的微服务架构
32 0
|
2月前
|
监控 数据可视化 关系型数据库
微服务架构+Java+Spring Cloud +UniApp +MySql智慧工地系统源码
项目管理:项目名称、施工单位名称、项目地址、项目地址、总造价、总面积、施工准可证、开工日期、计划竣工日期、项目状态等。
304 6
|
20天前
|
canal 消息中间件 关系型数据库
【分布式技术专题】「分布式技术架构」MySQL数据同步到Elasticsearch之N种方案解析,实现高效数据同步
【分布式技术专题】「分布式技术架构」MySQL数据同步到Elasticsearch之N种方案解析,实现高效数据同步
66 0
|
28天前
|
存储 Kubernetes 固态存储
IEEE HPCA 2024|LightPool:高性能、轻量级的存储池化架构
IEEE HPCA 2024|LightPool:高性能、轻量级的存储池化架构
|
1月前
|
存储 监控 容灾
TiDB存储层深入:分布式存储架构与数据一致性保障
【2月更文挑战第26天】本文将深入探讨TiDB的存储层,详细解析其分布式存储架构、数据复制机制以及数据一致性保障措施。通过了解存储层的核心组件和工作原理,我们可以更好地理解TiDB如何确保数据的可靠性、高可用性和可扩展性。本文将从存储层的架构、数据分布、容错机制等方面展开介绍,帮助读者全面掌握TiDB存储层的关键技术和优势。
|
1月前
|
架构师 算法 关系型数据库
数据库架构师之道:MySQL安装与系统整合指南
数据库架构师之道:MySQL安装与系统整合指南
44 0
|
1月前
|
运维 API Docker
深入浅出:微服务架构与容器化技术的完美融合
【2月更文挑战第13天】 在现代软件开发领域,微服务架构和容器化技术已成为推动企业快速发展的两大核心力量。本文将从微服务的基本概念出发,深入探讨其与容器化技术结合的必然性与优势,进而分析如何在实践中有效地实现二者的完美融合。通过对微服务架构的细致解析及容器化技术的应用展示,旨在为读者提供一种全新的视角,理解并掌握这一前沿技术趋势,以指导实际工作中的技术选择与架构设计。
|
2月前
|
存储 监控 关系型数据库
ELK架构监控MySQL慢日志
ELK架构监控MySQL慢日志
|
2月前
|
SQL 缓存 关系型数据库
从架构师角度全局理解Mysql性能优化
从架构师角度全局理解Mysql性能优化